controlled_substances


    

EHS > Radiation Safety > Resources & Links > Figures In Radiation History >

Enrico Fermi

Enrico Fermi's first significant accomplishment in nuclear physics was providing a mathematical means for describing the behavior of certain types of subatomic particles, a process concurrently developed by Paul Dirac and which came to be known as Fermi-Dirac statistical mechanics. His next major accomplishment was to successfully explain beta decay by incorporating into the process the production of a new particle which he named the neutrino. Despite the significance of his contributions to theoretical physics, Fermi is best known for his experimental work. When Frédéric and Irène Joliot-Curie first produced artificial radionuclides by bombarding aluminum with alpha particles, Fermi recognized that James Chadwick's recently discovered neutron offered a means to create radionuclides from targets of higher atomic number. In the course of doing so, Fermi noticed that greater activity was induced when the neutron bombardment was performed on a wooden table. He deduced that the neutrons became more effective because they slowed down after being scattered by the wood. He also recognized that neutron bombardment of uranium had the potential to produce a new class of elements, referred to as the transuranics. For his discovery of new radioactive elements and his work with slow neutrons, Fermi was awarded the 1938 Nobel Prize in physics. However, unknown to Fermi and the Nobel Prize Committee, the "new elements" Fermi characterized (with one exception) weren't new at all, they were fission products, i.e., radioisotopes of known elements produced by splitting uranium. Shortly after receiving his Nobel Prize, Fermi left Italy to join the faculty of Columbia University in the United States. Here he supervised a series of experiments that culminated in construction of the CP-1 Pile, the first controlled self-sustaining nuclear chain reaction. This momentous event took place in a squash court under the west stands of Stagg Field at the University of Chicago on December 2, 1942. Fermi thus became the first to control nuclear fission, the very process that in 1934 had led him to the false conclusion that he had discovered the transuranic elements!

Thanks to the following group for allowing us to reprint this information:

The Health Physics Society
1313 Dolley Madison Blvd., Suite 402
Mclean, Virginia 22101

Tel: 703-790-1745
Fax: 703-790-2672

 

Index Of Figures In Radiation History


Office InformationRadiation SafetyChemical SafetyBiological SafetyOccupational Safety
Animal HandlerHazardous WasteEnvironmentalControlled SubstancesTrainingManuals & FormsMSDSLinks

ehs@msu.edu • MSU Home PageOffice of Vice President for Research and Graduate Studies

© MSU Board of Trustees, All Rights Reserved